
AN ADVANCING FRONT DELAUNAY TRIANGULATION
ALGORITHM DESIGNED FOR ROBUSTNESS

D. J. Mavriplis

Institute for Computer Applications in Science and Engineering
NASA Langley Resc_u'ch Center

Hampton, VA

ABSTRACT

A new algorithm is described for generating an unstructured mesh about an arbitrary two-

dimensional configuration. Mesh points are generated automatically by the algorithm in a

manner which ensures a smooth variation of elements, and the resulting triangulation consti-

tutes the Delaunay triangulation of these points. The algorithm combines the mathematical

elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement

features, boundary integrity, and robustness traditionally associated with advancing-front-type

mesh generation strategies. The method offers increased robuslness over previous algorithms

in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell

size distribution throughout the flow-field.

This research was supported under the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 and No. NAS1-19480 while the author w,xs in residence at the Institute for Com-

puter Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton. VA

23665.

1. INTRODUCTION

One of the main promises of unstructured mesh computational fluid dynamics is the abil-

ity to discretize flow-fields about arbitrarily complex geometries in two and three dimensions.

With this purpose in mind, a number of algorithms for constructing two-dimensional triangular

and three-dimensional tetrahedral unstructured meshes have been developed over the years [1-

9]. Of the various methods developed, two types of approaches which have received much

attention in the computational fluid dynamics community have been advancing-front-based

techniques[I,2] and Delaunay-triangulation-based techniques [3,4,5,6]. These two strategies

have most often been perceived as competing approaches to the same problem. However, a

Delaunay triangulation merely refers to a particular connectivity associated with a given set of

points which possesses certain desirable properties, while an advancing front technique consti-

tutes a point placement strategy while imposing a particular ordering of the element generation

process. Thus, the two approaches are in some sense complementary, and several recent

attempts to combine the advantages of both methods have appeared in the literature [7,8,9].

This is the approach taken in this work.

One may question the need for yet another unstructured mesh generation strategy, espe-

cially in two dimensions. As will be shown, all of the present methodologies offer much room

for improvement in terms of either efficiency or robustness, and the present algorithm was

designed with such issues in mind. Furthermore, the two-dimensional setting is employed for

demonstrating techniques which should eventually be extendable to three dimensions.

1.1. The Advancing Front Approach

In order to understand the development of the present algorithm, it is useful to first exam-

ine the advantages and disadvantages of the various existing algorithms. Advancing front tech-

niques begin with a discretization of the geometry boundaries as a set of edges in two dimen-

sions. These edges form the initial front which is to be advanced out into the field. A particu-

lar edge of this front is selected, and a new triangle is formed with this edge as its base, by

joining the two ends of the current edge either to a newly created point, or to an existing point

on the front. The current edge is then removed from the front, since it is now obscured by the

new triangle. Similarly, the remaining two edges of the new triangle are either assigned to the

front or removed from the front, depending on their visibility, as shown in Figure 1. The front

thus constitutes a stack (or priority queue), and edges are continuously added to or removed

from the stack. The process terminates when the stack is empty, i.e. when all fronts have

merged upon each other and the domain is entirely covered. One of the critical features of

such methods is the placement of new points. Upon generating a new triangle, a new point is

first placed at a position which is determined to result in an optimal size and shape triangle.

The parameters which define this optimum triangle as a function of field position are obtained

by a prescribed field function (which may be interpolated from a background grid). The trian-

gle generated with this new point may result in a cross-over with other front edges, and thus

may be rejected. This is determined by computing possible intersections with "nearby" front

edges. Alternately, an existing point on the front may coincidentally be located very close to

the new point, and thus should be employed as the forming point for the new triangle, to avoid

the appearance of a triangle with a very small edge at some later stage. Existing candidate

points are thus also searched by locating all "nearby" front points.

One of the advantages of such an approach is thus the automatic point placement stra-

tegy, which generally results in high-quality elements throughout most of the flow-field due to

-2-

theoptimum positioning of these new points. Additionally, all real operations performed (such

as intersection checking) are of a local nature; i.e. intersection checks are performed with

neighboring edges of similar length, thus reducing the chances for round-off error induced

failure. Finally, boundary integrity is guaranteed, since the boundary discretization constitutes

the initial condition.

The space requirements for such an algorithm are lower than may be expected. Since

this is essentially a greedy triangulation [10]; i.e. formed elements are never subsequently

modified, all points, edges and triangles which lie behind the front need no longer be con-

sidered in the generation process. Thus the only active portion of the data is the front. Since
a front is has one lower dimension than the domain to be discretized, the required space for

such an algorithm in two dimensions is O(4N-), where N is the final number of grid points

generated. Since N points are added sequentially, the complexity is at most O(N',_-). How-

ever, by employing sophisticated searching techniques such as spatial quad-trees, this complex-

ity is easily lowered to O(Nlog_N-) which is asymptotically equivalent to O(NlogN). Optimal

space usage has not in general been achieved, due to the difficulty in continuously dumping out

generated elements. However, restart capabilities are easily implemented [11], which can

greatly reduce the required working size for a large mesh generation job.

The disadvantages of advancing front techniques mainly relate to their efficiency. The

intersection checking phase is a rather brute-force technique for ensuring the acceptability of a

new triangle, which is relatively expensive. Additionally, for each generated triangle, the

quad-tree data structure must be traversed from top to bottom (O (logN) steps) in order to locate

"nearby" points and edges. Another contributing factor is the fact that advancing front tech-

niques construct the mesh one triangle at a time. Since in two dimensions there are asymptoti-

cally twice as many triangles as points, a more efficient strategy would be to construct the

mesh one point at a time. Thus, each time a new point is generated, efficiency could be

gained by determining all the potential triangles which join this new point to the existing front

with a single traversal of the quad-tree data-structure. In three dimensions, the savings are

even greater, since there exists on average 5 to 6 times more tetrahedra than vertices.

Finally, even though advancing front techniques rely only on local operations, they may

still suffer from robustness problems. Central to the issue of determining acceptable triangles

and "best" points, is the determination of a local length scale which defines the region of

"nearby" points and edges. This length scale is generally obtained from the field function

(which may employ a background grid). Consider the case of two merging fronts. If the field

function varies rapidly over the region between the merging fronts, the relative sizes of the

edges on one front may be much larger than those on the other front. If a search is initiated

from the front with the smaller length scale, the region of "nearby" edges may not contain the

appropriate edges and points of the other front, and failure will occur, as shown in Figure 2.

Thus, the advancing front-technique can only be guaranteed to produce a valid triangulation if

certain non-heuristic constraints are derived and imposed on the variation of the field function.

1.2. Delaunay Triangulation Algorithms

Given a set of points in the plane, there exists many possible triangulations of these

points. A Delaunay construction represents a unique triangulation of these points which exhi-

bits a large class of well defined properties. Particular properties can be employed to construct

algorithms for generating the Delaunay triangulation of a given set of points.

-3-

The emptycircumcirclepropertyforms the basisof the Bowyer/Watsonalgorithm
[12,13]. This propertystatesthatno trianglein a Delaunaytriangulationcancontaina point
otherthan its three forming vertices within its circumcircle. Thus, given an initial triangula-

tion, a new point may be inserted into the triangulation by first locating and deleting all exist-

ing triangles whose circumcircles contain the newly inserted point. A new triangulation is then

formed by joining the new point to all boundary vertices of the cavity created by the previous

removal of intersected triangles, as shown in Figure 3.

These algorithms exhibit a worst case complexity of O (N 2) (imagine the case where each

newly inserted point intersects all existing triangle circumcircles) and have thus been avoided

in the computational geometry literature. However, O(N 2) behavior represents a pathological

case and in general mesh generation applications employing this algorithm exhibit close to

linear complexity [4]. In fact, it has been shown that O(NiogN) complexity can always be

achieved if the order in which the points are inserted is modified [14].

Point insertion algorithms can be employed as the basis for a mesh generation strategy

where the mesh points have been predetermined. The mesh points are put in a list, and an ini-

tial triangulation is artificially constructed (with auxiliary points) which completely covers the

entire domain to be gridded. The mesh points in the list are then inserted sequentially into the

existing triangulation using the Bowyer/Watson algorithm. The final mesh is obtained when all

points from the list have been inserted. The main problems associated with such an approach

relate to the generation of an initial triangulation. While it is not difficult to construct an initial

triangulation, the insertion of points can lead to robustness problems due to round-off error.

This comes about due to the non-local nature of the real operations required in the insertion

process. When an inner boundary point is introduced at the initial stages of the triangulation, a

triangle joining this point to the outer boundary will most likely be formed. If the next point

introduced is an adjacent boundary point, the distance between these two points may be much

smaller than the distance to the outer boundary (i.e. the other dimension of the triangle being

intersected), and round-off error alone may cause an improper reconnection.

For non-convex domains, the integrity of the boundaries is not guaranteed by such an

approach. This is generally remedied by increasing the boundary point resolution, or by tri-

angulating through the boundary and performing an edge swapping clean-up phase as a post-

processing operation to recover the boundary edges [15].

The poor worst case complexity of the above algorithins has lead to the development of a

variety of divide and conquer algorithms for the Delaunay triangulation of an existing point set

[10,16]. In this approach, the points are recursively divided into two groups, each group is tri-

angulated individually, and the groups are then merged together. Such an approach can be

shown to exhibit a worst case complexity of O(NlogN). The merging of two triangulations

exhibits certain similarities with the merging of fronts in the advancing front process. How-

ever, the algorithms are based on known Delaunay triangulation properties, rather than the

assumption of an appropriate length scale, and thus can be proved to yield a correct triangula-

tion under any conditions.

An advancing front type algorithm for constructing a Delaunay triangulation of a given

set of points has been demonstrated in the context of mesh generation by Merriam [7]. This

approach, which has also been reported in other applications [17,18,19], relies on the empty

circumcircle property. An edge on the front is chosen, and a new triangle is tentatively formed

by joining the ends of this edge to an arbitrary point of the set of points to be triangulated

which lie to the interior of the domain, with regards to the front. If this formed triangle

-4-

containsanypointswithin its circumcircle,it cannotbea validDelaunay triangle, and thus an

altemate point is chosen; i.e. the point contained inside the newly formed circumcircle which is

closest to its circumcenter. By iterating this procedure, as shown in Figure 4, the appropriate

point which produces a triangle containing no points interior to its circumcircle is eventually

found. The new triangle is thus accepted, and the front advanced.

The present work makes use of the ideas found in the divide and conquer algorithms and

the advancing front Delaunay triangulation algorithm. However, all the algorithms discussed

so far assume that the mesh points have been predetermined. What is desired in the mesh gen-

eration context is an automatic point placement strategy. There are various Delaunay triangula-

tion algorithms which incorporate automatic point placement strategies. A very simple method

[5,6] is based on the Bowyer/Watson algorithm. Starting with an initial coarse triangulation

which covers the entire domain, a priority queue is constructed based on some parameter of the

individual triangles (circumradius for example). A field value is assumed to exist which deter-

mines the local maximum permissible value for the circumradius of the triangles (or other

parameter). The first triangle in the queue is examined, and a point is added at its circum-

center if the triangle circumradius is larger than the locally prescribed maximum. This new

point is inserted into the triangulation using Bowyer's algorithm, and the newly formed trian-

gles are inserted into the queue if their circumcircles are too large, otherwise they are labeled

as acceptable, and do not appear in the queue. The final grid is obtained when the priority

queue empties out.

A consequence of this approach is that the final triangulation depends on the order of the

insertion of the points. For example, if the queue is ordered by the smallest circumcircle rather

than the largest circumcircle, a different triangulation will result. Furthermore, the meshes pro-

duced by this strategy do not exhibit the high degree of smoottmess and element quality usu-

ally produced by the advancing front technique. Modifications to the point placement strategy

have been proposed separately by Rebay [8] and Mueller at al [9]. Both methods are quite

similar. In [8] for example, the triangles are divided into accepted (small enough) triangles,

and waiting (too large) triangles. However, a subset of the waiting triangles is defined as those

which border on accepted triangles. These so-called active triangles are the only ones con-

sidered as candidates for point insertion. When new points are inserted, they are positioned

along the median of the edge separating the active triangle from its neighboring accepted trian-

gle, at a distance which results in the formation of an optimal triangle between the new point

and the bounding edge. The optimal size of the triangle is determined from the field function.

The initial triangulation is set up by joining all inner boundary points to the outer boundary

points, and all triangles adjacent to the boundaries are defined as active. The order in which

points are inserted thus resembles the advancing front algorithm. The process begins at the

boundaries and marches outwards as new triangles are accepted, and their outer neighbors

become candidates for refinement. The produced triangulations exhibit the smooth variations

and high quality elements typically associated with advancing front techniques, without the

difficulties of merging fronts.

Delannay techniques involving point placement are much more efficient than advancing

front techniques. The absence of a sophisticated spatial data-structure for locating neighboring

points, and the lack of an intersection checking routine make these very simple and efficient

algorithms. Furthermore, the mesh is generated point by point, rather than one triangle at a

time. Each time a point is inserted, all triangles neighboring that point are formed simultane-

ously, which results in increased efficiency due to the larger number of elements than points in

-5-

an unstructured mesh. However, these algorithms still suffer from their inability to guarantee

boundary integrity and the use of non-local operations which are prone to round-off error, as

can be seen by the large aspect ratio (non-accepted) triangles in Figure 5, (which is taken from

[9]). These are precisely the strengths of the advancing front technique. Thus, what is

required is an advancing front strategy which automatically positions new points, forms trian-

gles which conform to the Delaunay criterion, and exhibits the efficiency of Delaunay point
insertion methods.

2. DESCRIPTION OF PROPOSED ALGORITHM

The proposed algorithm is essentially an advancing front algorithm which adds new

points ahead of the front, and triangulates them according to the Delaunay criterion. By mak-

ing use of certain properties of Delaunay triangulations, one can ensure that only local opera-

tions are required and that consistent triangulations are always obtained.

The local property of Delaunay triangulations forms the basis of this algorithm. A field

function is defined which determines the maximum permissible circumradius of a triangle as a

function of its position in the domain to be discretized. When a new point is added ahead of

the front, it is desired to construct all Delaunay triangles which contain this new point but

which do not violate the local circumradius bound. Triangles which violate the circumradius

bound should not be constructed, even temporarily, for this may require non-local operations

and the possibility of round-off induced error. One method of constructing these triangles is

simply to join the new point to every possible pair of points in the grid and preserve each

potential triangle which does not violate the Delaunay criterion and the circumradius bound. A

more efficient technique is to determine a subset of the grid points which is sufficient for locat-

ing all acceptable triangles. Such a subset can be formed by considering all points which are

less than 2p away from the new point, where p represents the maximum permissible local cir-

cumradius as determined by the field function. Since any resulting triangles will contain an

edge joining the new point to one of these candidate points, any points further than a distance

20 away from the new point cannot produce a triangle with a circumradius smaller than p.

Furthermore, it will be shown that we need not consider all such points, but only the points on

the front which are within 2p of the new point.

When adding a new point, two possibilities exist: either the point is not contained in any

existing triangle circumcircle, or there exists a number of triangles whose circumcircles contain

this new point. In the former case, we know that all existing triangles will still be valid after

the insertion of the new point. Thus any new triangles must be formed by joining the new

point to points on the front only. In the latter case, we must determine the set of triangles

whose circumcircles are intersected. This set may contain triangles which border on the front

as well as triangles which are interior to the mesh. However, the set cannot contain interior

triangles without containing at least one front triangle, otherwise the interior triangles would

not be visible to the new point after all intersected triangles have been removed, which is

required by the properties of a Delaunay triangulation [4]. Thus, in order to locate all inter-

sected triangles, we first locate the intersected front triangles, and then determine the inter-

sected interior triangles by searching the neighbors of these triangles, and the neighbors of any

subsequently found intersected triangles. In the traditional point insertion Delaunay algorithms,

such situations do not arise; since the triangulation always covers the entire domain, every

inserted point must be contained in at least one triangle circumcircle. Furthermore, all inter-

sected triangles can be located using the neighbor search approach, since the grid is fully

-6-

connected.In the advancingfront version,the neighborsearchmay be interruptedby the
ungriddedgapregionbetweenfronts. However,the Delaunayvisibility propertyguarantees
that all intersectedtrianglescanbe locatedfrom a neighborsearchprovidedall intersected
fronttrianglesareknownandusedto initiatethesearch,asshownin Figure6.

Finally,thereis a thirdsituationwhichmustbeconsidered.Theremayexistapointon
the front which,whenjoinedto the two endsof thefront edgebeingconsidered,formsan
acceptabletriangle.At firstit mayappearasif sucha situationshouldnotarise.Thisexisting
frontpointshouldhavebeenlinkedto thecurrentedgeatthetimeof its insertion.However,
dueto thevariationof the local field function,it is possiblethatsucha trianglewouldhave
beenrejectedatthattime,sincethefieldfunctionwasnotsampledat preciselythesamespatial
locationaswhenapproachingfrom theotherfront. In anycase,this situationis easilyhan-
dled. Sinceit involvesthegenerationof a newtrianglewithoutthe insertionof a newpoint,
wemerelyresortto thealgorithmreportedin [7,17,18,19]for advancinga Delaunaytriangula-
tion fronton asetof predeterminedpoints.

Thusthealgorithmcanbesummarizedasfollows.
1. Constructtheoriginalfrontasthesetof boundaryedges.

2. Chosea particularedgeof thefront, accordingto somecriterionsuchasminimumedge
length.

3. Determinethemaximumpermissiblecircumradiusby evaluatingthefield functionat the
centerof theedge.

4. Locateall frontpointswhicharelessthan2pawayfromeitherendpointof thisedge.

5. Usethealgorithmin [7] to determinetheDelaunaytriangleformedbetweenthisedgeand
thesetof candidatepoints,if sucha triangleexists.

6. If this triangleexistsandis acceptable(circumradiussmallerthanp), formnewtriangle,
updatethe front, andproceedto 13. Otherwisecreatea new point at theappropriate
location.

7. Determineall fronttriangleswhosecircumcirclesarebrokenbythenewpoint.
8. Usinga neighborsearchinitiatedat theintersectedfronttriangles,locateall interiortrian-

gleswhosecircumcirclesareintersectedby thenewpoint.
9. Removeall suchtrianglesandupdatethefront. Anynewfrontpointswhichresultfrom

thisoperationareaddedto thelistof "close"points.
10. If thecircumradiusof anyof the intersectedtrianglesis largerthanthepreviouslydeter-

minedmaximumpermissiblevaluep, replacetheold valueby this newmaximum,and
locateanyadditionalfrontpointswhicharelessthen2pawayfromthenewpoint.

11. Formall possibleDelaunaytriangleswhichcontainthenewpointandtwootherpointsin
the list of "close"points,andwhichdonot violatethe localcircumradiusbound. Such
trianglesarefoundusingthealgorithmin [7].

12. Add thesetrianglesto themeshandupdatethefront.

13. If frontqueueis empty,stop,otherwisego to 2.
Thesearchesin steps4 and7 mustbe implementedusingquad-tree-typedatastructures

inorderto avoidan O(N4N-) overhead. The actual manner in which new points are positioned

in step 6 is taken from [8]. In this work, a triangulation which covers the entire domain

always exists, and new points are inserted in the so-called active triangles which border on

-7-

previouslygeneratedacceptedtriangles.A new pointis positionedalongthemedianof the
edgewhichdelimitstheactivetrianglefromanacceptedtriangleat theprecisedistancewhich
resultsin a triangleof thedesiredcircumradiuswhenthenewpointis joinedto theendpoints
of this edge. However,theprescribedcircumradiusmaybe incompatiblewith the local tri-
angulation.For example,if theprescribedcircumradiusis smallerthanhalf thecurrentedge
length,thereis nopoint locationwhichyieldsa triangleof thedesiredsize. In thiscase,the
newpointis positionedat the intersectionof theedgemedianandtheedgeinscribingcircle,
sincethisresultsin thesmallestpossibletrianglecircumcirclecontainingthecurrentedge. On
theotherhand,if theprescribedcircumcircleis muchlargerthanthecurrentedgelength,the
newpoint mayinadvertentlybepositionedcloseto anotherexistingfront meshpoint,which
wouldresultin undesirabletrianglesawayfromthecurrentedge.In thiscase,thepointloca-
tion "along the median of the current edge is limited by the circumcenter of the current active

triangle, thus guaranteeing that the new point will be at least a distance Pactive away from all

other mesh points.

This strategy is mimicked in the current advancing front algorithm. The new point is

positioned along the median of the current front edge at a distance which results in a triangle

of the desired circumradius. The location of the new point along the median is limited at the

lower end by the intersection of the median with the inscribed circle of the current front edge,

and at the other extreme by the location of the circumcenter of the Delaunay triangle formed

with this edge and existing mesh points, which is found in step 5, as shown in Figure 7. Thus,

in step 5, we must ensure that we form any triangle for which the circumradius is up to twice

the size of the prescribed circumradius. Any larger triangles will not be useful in limiting the

position of the new point. If the circumradius of the formed triangle is smaller than twice the

prescribed value, but still larger than the prescribed value itself, the triangle will be employed

solely to limit the position of the new point, and then discarded afterwards. On the other hand,

if the triangle circumradius is smaller than the prescribed value, the triangle is retained as part

of the mesh, and no new point is required.

When new triangles are formed, one must ensure that the integrity of the boundary

discretization is not violated. This is accomplished by removing from the list of "close" points

all points which are not visible to the new point due to the presence of boundary edges. (In the

case of step 5, we remove all points which are not visible to the two end points of the current

edge.) In two-dimensions, the existence of constrained Delaunay triangulations [20] guarantees

that this is a sufficient condition to obtain a suitable boundary conforming discretization. One

method of removing non-visible points is to draw the ray from the new point to the point being

tested, and check for intersections with all boundary edges. Since the number of boundary

edges is O(-,tN-), this can become prohibitively expensive. Hence, a sufficient subset of the

boundary edges which are "close enough" to the new point is first determined and then

employed to check for intersections. Since the points being tested are all within a distance 29

of the new point, we are merely required to test all boundary edges which are within this dis-

tance of the new point. These include but are not limited to all boundary edges with an end

point which belongs to the current list of "close" points. In order to locate remaining boundary

edges whose normal distance to the new point is less than 2p but whose end points are further

away than 2p from the new point, we draw the inscribed circle of the boundary edge, as shown

in Figure 8.

We distinguish two cases: the first case when the new point is inside the inscribed circle

of the boundary edge, and the second case when the new point lies outside this circle. In the

-8-

first case,theboundaryedgeis addedto the list of edgeswhichrequiresearching.In the
secondcase,Figure8 indicatesthatthedistancefrom thenewpointto theendpointsof the
edgecanat mostbe_ timesthenormaldistancefromthenewpointto theedge.Thus, the

set of boundary edges required for checking intersections is formed by locating all boundary

edges which contain a vertex less than 2_/2p away from the new point, as well as all boundary

edges whose inscribed circles are intersected by the new point. The determination of these

points and intersected circles can be performed simultaneously with the search for nearby

points in step 4 and the search for intersected triangle circumcircles in step 7 respectively.

Using this subset, the number of boundary edges which must be checked for intersections

is greatly reduced. In fact, in most cases, typical for the interior regions of the mesh, no

"close" boundary edges will be found, and no checking for intersections will be required.

3. RELATIONSHIP WITH PREVIOUS WORK

It is informative to examine the relationship of the present algorithm with those discussed

earlier. This work is closely related to that of Rebay [8] and Mueller at el [9]. A similar

mesh should be produced by the present method and that of [8], since both use similar point

placement strategies, and both produce the Delaunay triangulation of these points. The main

difference is that in the previous works, a triangulation which covers the entire domain always

exists, whereas in the present work, only the area behind the fronts are covered by a triangula-

tion. In the former case, the existing triangulation is conveniently employed as the basic data-

structure (i.e. a linked list) to support the searches for locating intersected triangles and points

to which the new point must be connected. In the present work, only the triangles which

correspond to "accepted" triangles in [8] are present, and thus more complicated quad-tree type

data-structures must be employed to locate neighboring points and intersected triangles on the

fronts, while the triangulation can be employed to aid the search in regions behind the fronts.

While this adds to the coding complexity and incurs additional overhead, the omission of non-

accepted triangles ensures that all real operations are of a local nature, thus minimizing oppor-

tuinites for round-off error induced failure. Boundary integrity is also preserved automatically.

The present algorithm also closely resembles the advancing front algorithm of [1,2].

However, explicit intersection checking is not required due to the properties guaranteed by the

Delaunay construction. Both approaches rely on the determination of a local characteristic dis-

tance which is employed for reducing the number of front edges and points which must be

considered in the triangulation process. In the advancing front algorithm of [1,2], this length

scale is obtained from the field function (evaluated by interpolating from a background grid).

The implicit assumption in this method is that the field function varies slowly with respect to

the local cell size, and thus may be considered locally constant when advancing a front or

merging two fronts. In cases where this assumption does not hold, the merging of two fronts

of widely differing cell sizes may occur, which usually results in a failure of the algorithm. In

the present strategy, a local length scale is obtained from the prescribed field function as well.

This distance is employed to locate all "nearby" front points. However, an additional search is

required to locate front triangles whose circumcircles are intersected by the newly inserted

point. If the field function were constant throughout the domain, this second search would not

be required, since all vertices of any intersected triangle (which could have a circumcircle no

larger than that prescribed by the field function) would be no further from the new point than

the constant search distance defined by the field function. Thus, the search for intersected front

triangles corresponds to the determination of an alternate characteristic length scale at

-9-

neighboringfronts,which is requiredin order to guarantee a valid triangulation in regions

where the field function varies rapidly.

4. COMPLEXITY AND SPACE REQUIREMENTS

The space requirements and computational efficiency of the present algorithm lie in

between those of traditional advancing front algorithms and the Bowyer/Watson algorithm for

Delaunay triangulation. As opposed to the advancing front algorithms, the present approach

does not represent a true greedy algorithm [10]; i.e. triangles behind the front may be subse-

quently modified. However, the only such triangles which may be modified are those whose

circumcircle extends ahead of the front into the ungridded region into which new points are

placed. Assuming a relatively smooth distribution of elements behind the front, the number of

such non-frozen elements is a constant times the size of the front. Thus, we can expect a

space requirement of O(_/N-), although the worst case estimate is more likely O(N). On the

other hand, it is a simple matter to create a restart facility which dumps out the generated por-

tion of the grid after a prescribed number of elements have been produced, and reinitializes the

generation process using the front of the previous mesh as the initial condition. If no old ele-

ments behind the front are considered in the restart process, the resulting mesh may contain

regions of locally non-Delaunay triangles along the fronts present at each restart phase. If a

true Delaunay triangulation is required, these regions may be converted using the edge-

swapping algorithm [21] in a postprocessing phase.

The current algorithm exhibits a worst case complexity of O(N2), just as the

Bowyer/Watson algorithm for Delaunay triangulation. This occurs when the circumcircles of

all existing triangles are intersected by each new point, or when all front points must be

included in the list of "nearby" points which are candidates for forming a new element. How-

ever, for the smooth element and point distributions which are sought in the context of mesh

generation, the number of points within the characteristic distance of a newly inserted point

and the number of intersected triangles should approach a constant. When the logN term from

the quad-tree structures employed for the search routines on the front is included, a complexity

of 0 (NiogN) can be expected. This is the same complexity exhibited by other advancing front

algorithms under the same assumptions. However, the present algorithm can be expected to

run significantly faster than other advancing front algorithms since the mesh is generated one

point at a time, rather than one triangle at a time. In two dimensions, the differences may be

small, especially since two length scales and thus two searches on the front are required for

robustness (an additional one for the intersected front triangles). However, in three dimensions

where there are on the average 5 to 6 times more tetrahedra than vertices, the O (logN) cost of

traversing the octree data-structures may be amortized over all elements generated about each

newly inserted mesh point.

On the other hand, the present algorithm will probably not achieve the efficiency exhi-

bited by Delaunay triangulation point insertion methods, due to the need to traverse the quad-

tree data structures which are not present in these other methods, and the need to consider a

sufficient but not necessary list of candidate points for triangulation at each point insertion pro-

cess. This cost, as well as the increased coding complexity, is viewed as the price required for
additional robustness.

- 10-

5. EXAMPLES

Figure9 depictstheprocessof generating a mesh about a geometry consisting of two

thin plates. The boundary discretization of these thin plates is relatively uniform, except for

two very large edges on the upper surface of the lower plate. The combination of thin plates

and irregular boundary discretization poses a significant challenge to traditional Delaunay tri-

angulation methods, as well as to standard advancing front techniques. In the former case, the

boundary integrity is difficult to maintain without adding new boundary points. In the latter

case, the merging of two fronts of widely differing length scales is produced. The present

algorithm handles this case automatically, as can be seen from the figure. A valid triangulation

is observed, even in the region of rapid variation of the characteristic length scale, although the

quality of the triangulation degrades in such regions, as would be expected.

For practical problems involving dense meshes, a smooth background field function must

be constructed, and sophisticated spatial data-structures must be employed for efficiently per-

forming steps 4 and 7, in section 3.

The background field function is constructed by the method described in [22] with a

slight modification. A set of point sources which locally specify element size are placed in the

flow field, and a Poisson equation involving these sources is solved on a background mesh. In

the present work, the Poisson equation is solved on a mesh formed by constructing a quadtree

about the boundary points which define the initial front, as shown in Figure 10. When the

field function is sampled at a particular point in the plane, the quadtree element containing this

point is located by descending the tree, and the spacing value is taken as a bilinear interpola-
tion of the four values at the comers of the quad element, which have been determined by

solving the associated Poisson equation.

The search for "close" points (i.e. step 4 in section 3), is implemented using a standard

region quadtree [23]. The search for intersected front triangle circumcircles (i.e. step 7 in sec-

tion 3) and boundary edge circumcircles is somewhat more involved. This is achieved by first

representing each circumcircle by a point in three-dimensional space, with coordinates x, y and

r, where x and y are the physical coordinates of the circumcircle center, and r represents the

radius of the circumcircle. A region octree containing all front triangle and boundary edge cir-

cumcircles is then constructed and maintained dynamically, as the front evolves [23].

In order to determine all circumcircles intersected by a point (xo,yo), we draw the cone

which has its origin at (Xo,Yo,0), and a slope angle of 45 degrees, as depicted in Figure 11.

We then search all octants of the tree which are contained or intersected by this cone.

In Figure 12, the generation of an unstructured mesh about a multi-element airfoil

configuration is depicted. The spacing distribution was determined using 4 source points at the

outer boundary, and 6 source points close to the airfoil surfaces. As can be seen, the method

yields a smooth variation of elements throughout the flow field, even without any additional

mesh smoothing. Figure 13 shows the effect of smoothing the final mesh. Edge swapping is

also performed to ensure the mesh remains a Delaunay triangulation, although very few edges

require swapping after the smoothing operation.

The mesh contains 41781 triangles and 21232 vertices, which required a total of 100

seconds to generate on a Silicon Graphics 4D35 workstation. In general rates of 350 to 450

triangles per second have been observed on a wide variety of cases. While the quadtree search
routines consume less than 5% of the total CPU time, the octree based circumcircle search has

been found to consume roughly 35% to 40% of the total time. As expected, the efficiency of

-11-

this algorithmappearsto fall in betweenthatof theadvancingfront methods[1,2], andthe
Delaunaytriangulationmethods[5,8,9].

It shouldbenoted,however,thatalgoritlunsfor triangulatingagivensetof points,such
asthatdescribedin [7], canbesignificantlymoreefficientthanthepresentalgorithm.This is
partlydueto thefact thathalf theproblemhasalreadybeensolved,i.e. theplacementof the
grid points. However,it is alsolargelydueto thefact thatthedatais static,andhencemore
efficientstaticdata-structuressuchasfully balancedtreesmaybeusedin thesearchroutines.
In the presentalgorithm,the searchis executedon the front pointswhicharecontinuously
changing,andthusdynamicdatastructureswhichsupportinsertionanddeletionof pointsmust
beemployed.

6. CONCLUSIONS AND FURTHER WORK

These results demonstrate the feasibility of generating unstructured meshes using an

advancing front strategy with an automatic point placement facility, while conforming to the

rules of Delaunay triangulation. The main advantages of such an approach over traditional

advancing front methods are increased robustness through the use of a more theoretically sound

approach, while avoiding the boundary integrity and accuracy induced failures of Delaunay

point insertion methods.

The octree based search routine for locating intersected front and boundary circumcircles,

while providing an order of magnitude increase in efficiency over a brute force type search,

still consumes a significant portion of the overall computational time. This indicates that

further increases in efficiency of the algorithm may be achieved by re-examining this search

operation.

Finally, the implementation of these ideas into the three dimensional setting is also

planned.

REFERENCES

.

.

°

.

.

.

Peraire, J., Vahdati, M., Morgan, K., and Zienkiewicz, O. C., "Adaptive Remeshing for
Compressible Flow Computations", J. Comp. Phys., Vol 72, October, 1987, pp. 449-466

Gumbert, C., Lohner, R., Parikh, P., and Pirzadeh, S., "A Package for Unstructured Grid
Generation and Finite Element Flow Solvers", AIAA paper 89-2175 June, 1989.

Weatherill, N. P., "The Generation of Unstructured Grids Using Dirichlet Tessalations"
Princeton University Department of Mechanical and Aerospace Engineering Report MAE
1715, July 1985.

Baker, T. J., "Three Dimensional Mesh Generation by Triangulation of Arbitrary Point
Sets", Proc. of the AIAA 8th Comp. Fluid Dyn. Conf., AIAA paper 87-1124, June, 1987.

Holmes, D. G., and Snyder, D. D., "The Generation of Unstructured Meshes Using
Delaunay Triangulation" Numerical Grid Generation in Computational Fluid Mechanics
Proc. of the Second International Conference on Numerical Grid Generation in Computa-
tional Fluid Dynamics, Miami, December 1988, Eds. S. Sengupta, J. Hauser, P. R. Eis-
man, and J. F. Thompson, Pineridge Press Ltd., 1988.

Dey, T. K., Bajaj, C. L., Sugihara, K., "On Good Triangulations in Three Dimensions",
Proceedings of the ACM Symposium on Solid Modeling Foundations and CAD�CAM
Applications, Austin, Texas, June, 1991.

- 12-

,

.

.

10.

11.

12.

Merriam, M. L., "An Efficient Advancing Front Algorithm for Delaunay Triangulation",
AIAA paper 91-0792, January, 1991

Rebay, S., "Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation
and Bowyer/Watson Algorithm", Paper presented at the 3rd Int. Conf. on Numerical
Grid Generation in Comp. Fluid Dyn., Barcelona, Spain, June 1991.

Muller, J. D., Roe, P. L., and Deconinck, H., "A Frontal Approach for Node Generation
in Delaunay Triangulations", Unstructured Grid Methods for Advection Dominated
Flows, VKI Lecture Notes pp. 9-1 9-7, AGARD Publication R-787, March 1992.

Preparata, F. P., and Shamos, M. I., Computational Geometry, An Introduction, Texts and
Monographs in Computer Science, Springer-Verlag, 1985.

Pirzadeh, S., "Recent Progress in Unstructured Grid Generation", AIAA paper 92-0445
January, 1992.

Bowyer, A., "Computing Dirichlet Tessalations", The Computer Journal, Vol. 24, No. 2,
1981, pp. 162-166

13. Watson, D. F., "Computing the n-dimensional Delaunay Tessalation with Application to
Voronoi Polytopes", The Computer Journal, Vol 24, No. 2, pp. 167-172, 1981.

14. Guibas, L. J., Knuth, D. E., and Sharir, M., "Randomized Incremental Construction of
Delaunay and Voronoi Diagrams", Stanford University Computer Science Rep. No.
STAN-CS-90-1300 January, 1990.

15.

16.

17.

18.

19.

20.

21.

22.

George, P. L., Hecht, F., and Saltel, E., "Fully Automatic Mesh Generator for 3D
Domains of any Shape", Impact of Computing in Science and Engineering, Vol 2, No. 3,
pp. 187-218, 1990.

Lee, D. T., and Schachter, B., "Two Algorithms for Constructing a Delaunay Triangula-
tion", International J. Comput. Inform. Sci., Vol 9, pp. 219-242, 1980.

Nelson, J. M., "A Triangulation Algorithm for Arbitrary Planar Domains", Applied Math
Modeling, Vol 2, September 1978, pp. 151-159.

Maus, A., "Delaunay Triangulation and the Convex Hull of n Points in Expected Linear
Time", BIT, Vol 24, pp. 151-163, 1984

Tanemura, M., Ogawa, T., and Ogita, N., "A New Algorithm for Three-Dimensional
Voronoi Tessellation", Journal of Computational Physics, Vol 51, No. 2, August 1983,
pp. 191-207.

Chew, L. P., "Constrained Delaunay Triangulations", Algorithmica, Vol 4, pp. 97-108,
1989.

Lawson, C. L., "Transforming Triangulations", Discrete Mathematics, Vol 3, pp. 365-372,
1972.

Pirzadeh, S., "Structured Background Grids for Generation of Unstructured Grids by
Advancing Front Method", AIAA Paper 91-3233, AIAA 9th Applied Aerodynamics
Conference, Baltimore, MD, September 1991.

23. Samet, H., "The Design and Analysis of Spatial Data Structures", Addison-Wesley, 1990.

-13-

................................... ° o°

°o °
oo

°°

°°° °°

oo° • •

ooo

o•o°°_

Figure 1
Illustration of Conventional Advancing Front Mesh Generation Concept in Two Dimensions.

Dotted Line Represents Current Front. New Triangles are Generated One at a Time,
by Joining the Two Ends of a Front Edge to Either a Newly Created Point, or an Existing Front Point.

-14-

Figure 2

Illuslration of a Failure Scenario for the Traditional Advancing Front Algorithm:

The Merging of Two Fronts of Widely Differing Length Scales.

The Advancing Front of Small Triangles May Fail to Locate the End Points of a Large Edge on the Adjacent

Front Prior to Cross-Over, Since these Points May Be Outside of the Search Region Defined by the Local Length Scale.

-15-

Figure 3

Illustration of Bowyer's Point Insertion Algorithm for Delaunay Triangulation

-16-

°°, °...°.,o." o.°,,.._°°

°, 'Oo°

• ° .° °°•°°%°
°

° ° °o°'"°° '°%°°°

• ° "o
°° '°

°," %

; ,.°o_ __
• • ' °,°,°,o

, °,°° °°.%

o°°°° °°Oo
°, °° ;

• j° °°•

." °°

oO°_'° °°.°

•° • : °°

; j°°°

°'°,°• °°°] _••
°°•°

: °•
• •• ._ .°° °°°

°• °.° • 0 • o°o°°

%o°. 0 °° o•°°°"
° i " ".°°

°-o.°° •° °°..._°

Figure 4

Illustration of the Iteration Sequence Employed by the Advancing Front Delaunay Triangulation Algorithm:

A Triangle is Formed by Joining the Front Edge to a Vertex. If the Circumcircle of this Triangle

Contains One or More Vertices, the Triangulation is Invalid, and a New Triangulation is Formed Using
One of the Vertices Interior to the Previous Circle. The Process Iterates Until a Triangle with a

Vertex-Free Circumcircle is Obtained, which Determines Convergence•

-17-

0.60

0.20 -

--0.20

--0.60 w w
--0.10 0.30 0.70 1,10

Figure 5
Illustration of the Advancing Front Nature of the Algorithms Described in [8] and [9].

The Illustration is Reproduced from [9] and Depicts the Delaunay Triangulation
Obtained at an Intermediate Stage in the Mesh Generation Process.

-18-

Figure 6
Illustration of the Search for Intersected Circumcircles Employed in The Current Algorithm

Upon Insertion of Point P, the Two Front Triangles S1 and $2 are Flagged as Having their Circumcircles Intersected.
The Two Neighbors of S1 are Searched and Found to be Non-Intersected.

One of the Neighbors of $2 is Flagged as Intersected, which Causes the
Search to Proceed to its Neighbors, Where it Terminates.

-19-

o'"

.,,""

°

°o'_

• J° •°".•°°.°

• • 7 I• " '°o.•

"••"'o,° •7 t

".°. •

°_°.°. ss /

°'°.°°o. S S

•. P2 :'
'o•

A ,
" I

:¢

IT

¢:

7

,: P1

,t" '• o
Q

I o

.°.°J "° o°

°." •

.o • ",
•°

," e .°

°. •

; •

°°..

°°s_.°

jl

7

s

s ¢

I /

J

!

f

I

I

!

o • '.! ,,'

"°'°°L_ " ."°"

"'""*,,.,,.•'*'''""

°o

Figure 7
Illustration of the Point Placement Strategy Employed by the Current Algorithm.

A New Point is Placed Along the Median of the Front Edge at a Distance Determined by the Prescribed Local
Circumcircle Size (Background Function). The Point Position is Limited at the Lower End by the Intersection
with the Inscribed Circle of the Front Edge (Point P1) and at the Upper End by the Circumcenter of the

Delaunay Triangle Formed Between the Front Edge and Existing Mesh Points (Point 1'2).

-20-

P

Figure8
If a Point P is Not Contained in the Inscribed Circle of a Boundary Edge

then the Distance from P to the End Points of the Edge s is bounded
by -/2.d, Where d Represents the Minimum Distance from P to the Edge.

Since s = "_'+7, the Bounding Case Occurs
when d = r, i.e. when P is on the Circle.

-21-

r

i _ Z_W_Z/ _

•k. ..- f

Figure 9 a)

Triangulation of Two Thin Plates With Dissimilar Boundary Point Distributions.

A Situation Involving Two Merging Fronts of Widely Different Length Scales Occurs.

Once a Vertex From the Front of Small Triangles Intersects One of the

Circumcircles of the Large Triangles on the Opposing Front, The Fronts are Merged.

-22-

Figure 9 b)
Final Triangulation Produced in Region of Merging Fronts for

the Triangulation of Two Thin Plates

-23-

i
i

.__w ------]---

p

i

li
i

4-
J

4t

___4__

-.- i
I ÷

!

Figure 10

Quadtree Constructed About Initial Boundary Point Distribution

This Quadtree is Employed to Support the Background Spacing Function and

Also Represents the Initial Form of the Quadtree Employed in the Search for "Close" Front Points.

-24-

r

@

¢

• •B •••

O •

p x

m.ip.

Figure 11
Two-Dimensional Illustration of 3D Octree Employed to Search for Intersected Front Triangle Circumcircles.
Circles are Represented as Points in 3D, Determined by their Center (Horizontal Axis X (and Y)) and their
Radius (Vertical Axis R). In order to Locate All Circles Intersected By Point P, All Quadrants (Octants)

Fully or Partially Contained within the Cone Centered at (P,0) Must be Searched.

-25-

Figure12 a)

Unstructured Triangular Mesh Generated About a Four Element Airfoil
Configuration by the Present Algorithm before the Application of Mesh Smoothing.

(Number of Vertices = 21232, Number of Triangles = 41781)
(Global View)

-26-

, A J A_

z

Figure 12 b)

Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm before the Application of Mesh Smoothing.

(Number of Vertices = 21232, Number of Triangles = 41781)

(Far Field View)

-27-

,dg._I

2_

Figure 12 c)

Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm before the Application of Mesh Smoothing.

(Number of Vertices = 21232, Number of Triangles = 41781)
(Close Up of Leading Edge Slat)

-28-

Figure13 a)

Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm After the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Global View)

-29-

\

Figure 13 b)
Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm After the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Far Field View)

-30-

Figure 13 c)
Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm After the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Close Up of Leading Edge Slat)

